Thursday, March 23, 2006


One day -- hopefully not on deadline -- the earth's magnetic poles will flip and we will all ... what? Lose the fridge magnets? Fall off the planet? Nobody knows because it hasn't happened for, oh, about 780,000 years.

Scientists thought pole-flipping was a random event. Now they're not so sure. From Physics Web:
[P]hysicists in Italy have found that the frequency of these polarity reversals is not random as previously thought but occurs in clusters, revealing some kind of "memory" of previous events.

Although a full geomagnetic polarity reversal can take thousands of years to complete, the implications could be enormous. As well as affecting the migration trajectories of birds and other animals, the disruption to the Earth's magnetic field could expose the Earth to hazardous cosmic rays -- a scenario that some researchers have linked to mass extinction events like the one that wiped out the dinosaurs around 65 million years ago. Geoscientists believe that our planet's internal magnetic dynamo is responsible for pole reversals, but the actual mechanism is not well understood.

Previous analyses assumed that the number of times the poles have reversed over last 160 million years follows a Poisson distribution, implying that the events are random. The Poisson distribution tells you the probability of a number of events occurring in a fixed time if the events are independent and the average rate is known. A good example of the Poisson distribution in physics is the likelihood of unstable radioactive nuclei decaying in a certain period.

Now, a team of physicists led by Vincenzo Carbone of the University of Calabria have discovered that the sequence of polarity reversals can be well described by a Lévy distribution instead. In contrast to Poisson statistics, the Lévy distribution describes stochastic processes that are characterised by the presence of "memory" effects -- or long-range correlations between the events in time. Lévy distributions are widely used to study many critical phenomena, such as earthquakes, and also when analysing financial data. The researchers obtained their results by careful statistical analysis of different sets of paleomagnetic data containing estimates of when the Earth's poles reversed.

"The result means that polarity reversals are not random events that are independent of each other," explains team member Fabio Lepreti. "Instead, there is some degree of memory in the magnetic dynamo processes giving rise to the reversals," he says.
The Earth remembers.


yetipelt said...

Gee, and here I thought the last time the Poles reversed was when the Nazis advanced.

Anonymous said...

Ah, the ultimate pole dance!